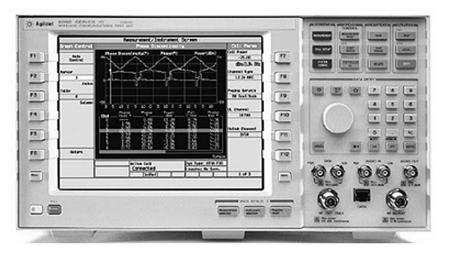


Key Capabilities


- User-configurable fixed reference channel (FRC) enable HSDPA data throughput testing in RB test mode
- TD-SCDMA real-time downlink
 source
- FM and GPS receiver calibration in one box
- AMR voice and echo
- TD-SCDMA to GSM system handover

Agilent E1969A TD-SCDMA_GSM Fast Switch Test Application

Includes E1969A-101 TD-SCDMA non-signaling test mode, E1969A-201 TD-SCMDA signaling mode, E1963A-403 TD-HSDPA and E1968A GSM/GPRS/EGPRS test application

For the E5515C (8960) wireless communications test set

Technical Overview

Extend Agilent's 8960 (E5515C) platform to TD-SCDMA, offering measurements compliant with 3GPP TS34.122 as the industry test standard.

With E1969A TD-SCDMA_GSM fast switch test application, Agilent's 8960 (E5515C) test set covers TD-SCDMA user equipment (UE) test based on 3GPP standards. On a single hardware platform, the E5515C, all 2G & 3G formats are supported with corresponding licenses: GSM/GPRS/EGPRS, W-CDMA/HSDPA/HSUPA, HSPA+, TD-SCDMA, CDMA2000[®], 1xEV-D0 rev A/rev B.

The E1968A GSM/GPRS/EGPRS test application is bundled together with three TD-SCDMA options (E1969A-101, E1969A-201, and E1969A-403) in the E1969A to meet dual-mode requirements on all TD-SCDMA devices.

E1969A-101 is designed to be used under non-signaling mode without an integrated TD-SCDMA protocol stack while E1969A-201 supports signaling mode. E1969A-403 supports the HSDPA data throughput testing in radio bearer (RB) test mode.

Reach high-volume production goals by moving prototypes quickly into production with this test solution's fast and repeatable measurements, accurate characterization, and ease of programming. Realize rapid deploy-ment and lower costs by just upgrading software on your existing 8960.

Key Capabilities (continued)

	TD-SCDMA	TD-HSDPA
Channel power	Yes	Yes
Occupied bandwidth	Yes	Yes
Transmit on/off time mask	Yes	Yes
Waveform quality		
Error vector magnitude (EVM)	Yes	Yes
Frequency error	Yes	Yes
 Peak code domain error (PCDE) 	Yes	Yes
Adjacent channel leakage ratio	Yes	Yes
Spectrum emission mask	Yes	Yes
Closed loop power control	Yes	No
Open loop power control	Yes	No
Dynamic power	Yes	No
Single-ended BER	Yes	Yes
Frequency stability	Yes	Yes
Spectrum monitor	Yes	Yes
Rx measurement		
Loopback BER	Yes	Yes
Block error ratio	Yes	No
HSDPA block error ratio	No	Yes

3GPP TS 34.122 Adherence

3GPP			
TS 34.122	Test description	E1969A-101	E1969A-201
5.2	Maximum output power	Yes	Yes
5.3	Frequency stability	Yes	Yes
5.4.1.3	Open loop power control		Yes
5.4.1.4	Closed loop power control (CLPC)	Yes ¹	Yes
5.4.2	Minimum output power	Yes	Yes
5.4.3	Transmit off power	Yes	Yes
5.4.4	Transmit on/off time mask	Yes	Yes
5.4.5	Out-of-synchronization handing of output power (continuous)		
5.4.6	Out-of-synchronization handing of output power for (discontinuous)		
5.5.1	Occupied bandwidth (OBW)	Yes	Yes
5.5.2.1	Spectrum emission mask (SEM)	Yes	Yes
5.5.2.2	Adjacent channel leakage power ratio (ACLR)	Yes	Yes
5.5.3	Spurious emissions	Yes ³	Yes ³
5.6	Transmit intermodulation	Yes ⁴	Yes ⁴
5.7.1	Error vector magnitude (EVM)	Yes	Yes
5.13.2	Peak code domain error (PCDE)	Yes	Yes
3GPP			
TS 34.122	Test description	E1969A-101	E1969A-201
6.2	Reference sensitivity	Yes ²	Yes
6.3	Maximum input level	Yes ²	Yes
6.4	Adjacent channel selectivity (ACS)	Yes ⁵	Yes ⁵
6.5	Blocking characteristics	Yes ⁵	Yes ⁵
6.6	Spurious response	Yes⁵	Yes⁵
6.7	Intermodulation characteristics	Yes⁵	Yes⁵
6.8	Spurious emissions		
3GPP	•		
TS 34.122	Test description	E1969A-201	E1969A-403
9.3.1	HS-DSCH throughput for fixed reference channels	Yes⁵	Yes⁵
9.3.1		Yes⁵	Yes ⁵
	reference channels HS-DSCH throughput for variable	Yes⁵	Yes ⁵
9.3.2	reference channels HS-DSCH throughput for variable reference channels Reporting of HS-DSCH channel	Yes ⁵	Yes⁵

- 1. Needs the solution under non-signaling mode that requires TD-SCDMA chipset support
- 2. Uses single-ended BER measure under non-signaling mode that requires TD-SCDMA chipset support
- 3. Requires use of external spectrum analyzer
- 4. Requires use of external spectrum analyzer and source
- 5. Requires use of external source

What to Order for TD-SCDMA

Model number	Description
E5515C	8960 Series 10 wireless communications test set
E5515C-003	Flexible CDMA base station emulator
E5515C-002	Second RF source
E1969A	TD-SCDMA_GSM fast switch test application
E1969A-101	TD-SCDMA non-signaling test mode
E1969A-201	TD-SCDMA signaling mode
E1969A-202	GSM/GPRS/EGPRS mobile test application
E1969A-403	TD-HSDPA

Technical Specifications

These specifications apply to an E5515C mainframe with Options 002 and 003 when used with the latest E1969A test application. Specifications in this document focus on TD-SCDMA related parts of E1969A (options E1969A-101 and -201). For GSM/GPRS/EGPRS related part, refer to *Agilent E1968A GSM/GPRS/EGPRS Test Application,* Technical Overview (5990-4520EN).

Specifications describe the test set's warranted performance and are valid for the unit's operation within the stated environmental ranges unless otherwise noted. All specifications are valid after a 30-minute warm-up period of continuous operation.

Supplemental characteristics are intended to provide typical, but non-warranted, performance parameters that may be useful in applying the instrument. These characteristics are shown in italics and labeled as "typical" or "supplemental." All units shipped from the factory meet these typical numbers at +25 °C ambient temperature without including measurement uncertainty.

Minimum of 1-year (-1SY) STSC is required with initial purchase of the system. 2-year (U1908AS-2SY) or 3-year (U1908AS-3SY) STSC is optional.

Use this option number to purchase STSC renewal: 1-year, 2-year (U1908AS-2RY) or 3-year (U1908AS-3RY, instead of using U1905A part numbers.

TD-SCDMA Mode (test and active cell)

Call connection types

AMR voice: standard voice call with audio loopback for a quick check of voice functionality for 12.2 k rate; also many more AMR rates, such as 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2, and 12.2 k

- UE and BS origination 12.2 k
- UE and BS release

TDD test mode: TDD test mode allows you to test the parametric performance of your UE's transmitter and receiver without call processing. In TDD test mode, the test set does not send signaling information on the downlink. Rather, it continuously generates a downlink signal and searches for a corresponding uplink signal. The UE must synchronize to the downlink signal and send and appropriate uplink signal, which the test set uses to measure the UE's transmitter and receiver performance. Any changes to the UE configuration must be accomplished by directly sending commands to the UE from a system controller through a proprietary digital interface.

RB test mode: fast conformance test calls with significant configuration control and testing capabilities

- · BS origination and release
- Support symmetrical RMCs at 12.2 rates. The symmetrical RMC are typically used for transmitter testing and receiver testing user BER (via loopback type 1) or BLER (via loopback type 2)

Inter-system handover: dual-mode functionality is required for most TD-SCDMA phones, as GSM is an integral part in the majority of devices shipping today. Inter-system handovers provide a means to validate dual-mode performance at your desk instead of roaming on a real network

- Blind handovers from TD-SCDMA to GSM
- Configurable landing GSM cell
- · Test control to GSM voice
- TD-SCDMA AMR voice to GSM voice

- 2. For battery emulation for UE without batter or/and to automate UE power cycling
- 3. Extra for convenience use to avoid frequent change of SIM within multiple UEs

Customer-installed instrument must have required options and firmware/software for system to function properly

TD-SCDMA RF generator

Frequency ranges (MHz):

Band a2010 to 2025Band f1880 to 1920These two bands are currently assigned in China for TD-SCDMA.

Frequency/Channel setting: by channel number or MHz (test mode only)

Frequency accuracy: same as timebase reference

Frequency setting resolution: 1 Hz

Output port control: control of RF source routing to either the RF IN/OUT port or the RF OUT ONLY port

RF IN/OUT cell power output range: -115 to -13 dBm/1.28 MHz This range is the hardware range with amplitude offset = 0. The actual power range is defined by adding the value of associated Amplitude Offset to the range in the table.

RF IN/OUT AWGN signal output level range: -115 to -15 dBm/ 1.28 MHz **RF IN/OUT VSWR:**

< 1.14:1, 400 to 500, 700 to 1000 MHz

- < 1.2:1, 1700 to 2000 MHz
- < 1.4:1, 2000 to 2700 MHz

RF IN/OUT reverse power: +37 dBm peak (5 W peak)

RF OUT ONLY cell power output range: -115 to -5 dBm/1.28 MHz

RF OUT ONLY reverse power: +24 dBm peak (250 mW peak)

Absolute output level accuracy: < ±1.2 dB

RF output EVM: < 10% (typical < 3%)

Carrier feed through: < -25 dB (typical < -35 dB)

Downlink channel power level: all downlink timeslot power levels are fixed to the cell power. The physical channels in one timeslot have separate relative powers and the relative power of the channels in one time slot must sum to 100% of the timeslot power. In test mode, all downlink channels' power levels and states are fixed except DPCH and DPCHo.

Downlink pilot on DwPTS relative level: 0 dB

AWGN channel relative level range: settable to -25 to +10 dB relative to the user-set CDMA cell power with 0.01 dB resolution

Primary CCPCH relative level: -3 dB

PICH relative level: -3.02 dB

DPCH relative level: settable from -30 to 0 dB with 0.01 dB resolution

DPCHo channel relative level: automatically calculated from the relative level of DPCH to provide the set cell power

Downlink CDMA modulation type: QPSK per 3GPP standard

Modulation type: QPSK per 3GPP standard

QPSK residual EVM: < 10%, typically < 3%

QPSK carrier feed through: < -25 dBc, typically < -35 dBc

TD-SCDMA RF analyzer

Frequency ranges for uplink channels (MHz):

Band a2010 to 2025Band f1880 to 1920

Frequency/Channel setting: by channel number or MHz (test mode only)

Maximum input level: +37 dBm peak (5 W peak)

Input level setting range: -70 to +30 dBm/1.28 MHz

Demodulation chip rate: 1.28 Mcps

Real-time demodulation of: uplink DPCH

TD-HSDPA Mode (active cell)

Call connection types	 RB test mode BS origination and release HSDPA RB test mode is operated on the downlink, simultaneously supporting as symmetrical RMC of 12.2 kbps.
TD-HSDPA RF generator	Downlink channel power level: all downlink timeslot power levels are fixed to the cell power. The physical channels in one timeslot have separate relative powers and the relative power of the channels in one time slot must sum to 100% of the timeslot power
	HS-SCCH relative level: -6.03 dB if only one HS-SCCH channel is configured; -6.97 dB if four HS-SCCH channels are configured
	HS-DSCH relative level: 0 dB
	Downlink CDMA modulation Modulation type: QPSK and 16QAM per 3GPP standard QPSK residual EVM: < 10%, typically < 3% QPSK carrier feed through: < -25 dBc, typically < -35 dBc
TD-HSDPA RF analyzer	Real-time demodulation of: uplink DPCH and HS-SICH
CW mode	Under CW mode, an unmodulated continuous wave (CW), a FM signal or a reduced single channel GPS source signal can be generated on the downlink; the level and frequency of the CW signal can be changed; for FM signal, besides the level, frequency, some other FM related parameters such as FM deviation and modulation frequency are also settable; for GPS signal, the power level, satellite ID and data patterns can be changed. No uplink demodulation or channel decoding is available with CW mode.
	CW signal generation Frequency ranges: 450 to 496 MHz, 700 to 800 MHz, 810 to 960 MHz, 1700 to 1920 MHz, 2010 to 2025 MHz
	Accuracy and stability: Same as timebase reference
	Supplemental characteristics Typical CW frequency switching speed: < 10 ms to be within <0.1 ppm of final frequency
	Operating frequency range: 292 to 2700 MHz Setting resolution: 1 Hz
	RF amplitude
	Output level range at RF IN/OUT: -10 to -13 dBm
	Output level range at RF OUT ONLY: -10 to -5 dBm
	Absolute output level accuracy: $< \pm 1.0 \text{ dB}$
	VSWR at RF IN/OUT: < 1.14:1 for 450 to 496 MHz and 810 to 960 MHz, < 1.2:1 for 1.7 to 1.99 GHz
	Reverse power at RF IN/OUT: < 2.5 W continuous, < 5 W peak bursted power
	Reverse power at RF OUT ONLY : < 500 mW continuous

	Supplemental characteristics Typical output level accuracy: < ±0.5 dB Typical output level repeatability at RF IN/OUT (returning to the same frequency and level): < ±0.1 dB Typical VSWR at RF OUT ONLY: < 1.4:1 for 450 to 496 MHz and 810 to 960 MHz, < 1.45:1 for 1.7 to 1.99 GHz Typical isolation from RF OUT ONLY port to RF IN/OUT port (when the RF gen- erator is routed to the RF OUT ONLY port): > 60 dB for 450 to 496 MHz and 810 to 960 MHz, > 40 dB for 1.7 to 1.99 GHz Operating level range at RF IN/OUT: -127 to -10 dBm Operating level range at RF OUT ONLY: -119 to -2 dBm
FM signal generation	These specifications apply to an E5515C test set when used with an E5520A FM adapter. Output signal amplitude and distortion specifications for FM testing with the E5515C and E5520A are supplemental.
Amplitude	Conversion gain through E5520A: -20.00 dB Output level range: -20 to -40 dBm Output level accuracy: ±1 dB at 76 to 108 MHz and -30 to -10 dBm
Frequency Modulation	Rate range: 50 Hz to 20 kHz Deviation range: 0 to 75 kHz Deviation accuracy: ±5% + residual FM at 1 kHz rate Residual FM: < 30 Hz at 50 Hz to 20 kHz
Single Channel GPS Source	A reduced single channel GPS signal can be generated for GPS receiver C/N0 test. The signal can be output from either RF IN/OUT or RF OUTPUT ONLY. Signal frequency: 1575.42 MHz Signal level range: -70 dBm ~-125 dBm Satellite ID: 1~ to 37 Chip rate: 1.023 Mcps Code support: C/A code Signal level accuracy: <±1.0 dB for signal level from -70~-116 dBm <±1.5 dB for signal level from -116~-125 dBm

Transmitter measurements

Channel power measurement

Measurement method: the average power measured in one time slot Mean power: measured with a bandwidth of at least $(1 + \alpha)^*$ chip rate, where $\alpha = 0.22$ and chip rate = 1.28 Mc/s

RRC filtered mean power: measured with a root-raised cosine (RRC) filter with roll-off α = 0.22 and a bandwidth equal to the chip rate (1.28 MHz)

Measurement level range: -65 to +28 dBm/1.28 MHz; measured signal level is expected within ± 9 dB of the expected power and has < 10.0 dB crest factor

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency

Timing capture range: -25 to +25 chips from the measurement trigger

Measurement interval: 1 timeslot excluding the guard period, 662.5 µs

Measurement accuracy (at ± 10 °C from the calibration temperature): $< \pm 1$ dB for -65 to 30 dBm (*typically* $< \pm 0.6$ dB)

Measurement triggers: auto, immediate, protocol, external, and RF rise **Temperature range:** +20 to +55 °C

Waveform quality measurement

Measurement method: the measurement is used to cover the following tests Error vector magnitude (EVM): the difference between the measured waveform and the theoretical modulated waveform (the error vector). Both waveforms pass through a matched root raised cosine filter with bandwidth 1.28 MHz and roll-off α = 0.22. Both waveforms are then further modified by selecting the frequency, absolute phase, absolute amplitude, and chip clock timing so as to minimize the error vector. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference signal power expressed as a %

Frequency stability (frequency error): the difference of the modulated carrier frequency between the RF transmission from the UE and the RF transmission from the BS

Peak code domain error: computed by projecting the error vector power onto the code domain at a specific spreading factor. The error power for each code is defined as the ratio to the mean power of the projection onto the code, to the mean power of the composite reference waveform expressed in dB. And the peak code domain error is defined as the maximum value for code domain error

Measurement level range: -25 to +28d Bm/1.28 MHz; measured signal level is expected within ± 9 dB of the expected power and has < 10.0 dB crest factor

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency for TD-SCDMA channel type; -2 to +2 KHz from the expected measurement receiver frequency for HSDPA channel type

Timing capture range: -25 to +25 chips from the measurement trigger

Measurement interval: 1 timeslot excluding the guard period, 662.5 µs

Measurement EVM range: < 20%rms

Measurement accuracy (at +10 °C from the calibration temperature): RMS EVM: < 2% Frequency error: ±10 Hz + timebase accuracy

Measurement triggers: auto, immediate, protocol, external, and RF rise

Transmitter measurements (Continued)

Other reported parameters: • magnitude error

- phase error
- origin offset
- timing error

Temperature range: +15 to +55 °C

Adjacent channel leakage ratio (ACLR)

Measurement method: the ratio of the RRC filtered mean power centered on the adjacent channel frequency to the RRC filtered mean power centered on the assigned channel frequency. The adjacent channels are located at ± 1.6 MHz and ± 3.2 MHz offsets

Measurement level range: +5 to +28 dBm/1.28 MHz; measured signal level is expected within ± 9 dB of the expected power and has < 10.0 dB crest factor **Frequency capture range:** -20 to +20 kHz from the expected measurement receiver frequency

Timing capture range: -25 to +25 chips from the measurement trigger

Measurement accuracy: (at ±10 °C from the calibration temperature) ±0.8 dB (typically ±0.5 dB) for measurements at -33 dBc at ±1.6 MHz offsets and -43 dBc at ±3.2 MHz offsets

Residual ACLR floor: < -55 dBc for ± 1.6 MHz offsets, < -60 dBc for ± 3.2 MHz offsets

Temperature range: +15 to +55 °C

Transmit on/off power (TOOP)

Measurement method: check whether the RRC filtered mean power versus time meets the specified mask. The test set measures three timeslots excluding the leading and the lagging guard period

Measurement level range: -65 to +28 dBm/1.28 MHz; measured signal level is expected within ± 9 dB of the expected power and has < 10.0 dB crest factor

Frequency capture range: -20 to +20 KHz from the expected measurement receiver frequency for TD-SCDMA channel type; -2 to +2 KHz from the expected measurement receiver frequency for HSDPA channel type

Timing capture range: -25 to +25 chips from the measurement trigger

TOOP noise floor: -72 dBm (-75 dBm noise floor plus 3 dB saturation recovery error)

Measurement interval: 3 timeslots excluding the leading and the lagging guard period

Measurement triggers: auto, RF rise, protocol, immediate, and external **Temperature range:** +15 to +55 °C

Transmitter measurements (Continued)

Spectrum emission mask (SEM)

Measurement method: a relative measurement of the out-of-channel emissions to the in-channel power. The in-channel power is measured after filtering the signal with a = 0.22, root-raised cosine (RRC) filter. The out-of-channel emissions are measured using a Gaussian filter with either in a 30 kHz or 1 MHz noise bandwidth. The out-of-channel power applies to frequencies that are between 0.8 and 4.0 MHz away from the center carrier frequency

Measurement level range: +5 to +28 dBm/1.28 MHz; measured signal level is expected within ± 9 dB of the expected power and has < 10.0 dB crest factor

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency for TD-SCDMA channel type; -2 to +2 KHz from the expected measurement receiver frequency for HSDPA channel type

Measurement accuracy (at \pm 10 °C from the calibration temperature): <+1.5 dB (typically +0.8 dB) for the following offsets

Frequency offsets	Levels (dBc)	Meas BW
0.8 to 1.8 MHz	$\left\{ -35 - 14 * \left(\frac{\Delta f}{MHz} - 0.8 \right) \right\}$	30 kHz
1.8 to 2.4 MHz	$\left\{ -49 - 17 * \left(\frac{\Delta f}{MHz} - 1.8 \right) \right\}$	30 kHz
2.4 to 4.0 MHz	-44	1 MHz

Timing capture range: -25 to +25 chips from the measurement trigger Measurement interval: 1 timeslot excluding the guard period, 662.5 μ s Measurement triggers: auto, RF rise, protocol, immediate, and external Temperature range: +15 to +55 °C

Occupied bandwidth (OBW)

Measurement method: the measure of bandwidth containing a specified percentage of the total integrated power of the transmitted spectrum, centered on the assigned channel frequency

Measurement level range: +5 to +28 dBm/1.28 MHz; measured signal level is expected within ± 9 dB of the expected power and has < 10.0 dB crest factor

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency for TD-SCDMA channel type; -2 to +2 KHz from the expected measurement receiver frequency for HSDPA channel type.

Timing capture range: -25 to +25 chips from the measurement trigger

Measurement interval: 1 timeslot excluding the guard period, 662.5 µs

Measurement triggers: auto, RF rise, protocol, immediate, and external

Measurement accuracy (at ±10 °C from the calibration temperature): < ±30 kHz Temperature range: +15 to +55 °C

Transmitter measurements (Continued)

Dynamic power (DPOW)

Measurement method: measures a series of power levels for a step sequence. Provides a fast power calibration method that covers the typical 85 dB (from -55 to +28 dBm) dynamic range of a TD-SCDMA mobile dtation

Measurement level range: -55 to +28 dBm/1.28 MHz; For the trigger steps, the step power is expected to be within +9 to -9 dB of the expected power; For the measurement steps, the first step power is expected to be within +9 to -9 dB of the initial step power; The relative power difference between adjacent step is expected to be within +9 to -20 dB

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency

Timing capture range: -25 to +25 chips from the measurement trigger

Measurement interval: 1 timeslot excluding the guard period when the sync mode is 'Midamble'; 784 chips when the sync mode is 'None'

Measurement accuracy (at ±10 °C from the calibration temperature): $< \pm 1$ dB for -65 to 30 dBm *(typically \leq \pm 0.6 dB)*

Measurement triggers: RF rise, protocol, and external

Concurrency capabilities: dynamic power measurement cannot be made concurrently with other measurements. Dynamic power measurement cannot be made while the HSDPA RMC connection is provided

Temperature range: +15 to +55 °C

Closed loop power control (CLPC) measurement

Measurement method: the closed loop power is defined as the relative power differences between RRC filtered mean power of original timeslot and that of the target timeslot without transient duration. It's the user's responsibility to drive UE output power to the right level as the start power of the first segment. UE should work in test mode to be able to synchronize with downlink signals on timing and frequency, and transmit traffic burst on TS1 without call connection, the power of which is under closed loop power control. When this measurement is initiated, the given number of DOWN TPC commands followed by the given number of UP TPC commands will be sent on the downlink traffic slot, one TPC command per one subframe. The UE output power on TS1 in continuous subframe would be measured

Measurement level range: -55 to +28 dBm/1.28 MHz; first step power should be within ± 6 dB of the expected power. Relative power difference between adjacent steps is expected to be within ± 6 dB. The crest factor is expected to be < 10.0 dB.

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency

Timing capture range: -25 to +25 chips from the measurement trigger

Measurement data capture period: 1 timeslot excluding the guard period, 662.5 µs

Measurement triggers: RF rise, protocol, and external

Concurrency capabilities: Closed loop power control measurement cannot be made concurrently with other measurements. Close loop power control measurement cannot be made while the HSDPA RMC connection is provided

Transmitter measurements

(Continued)

Measurement accuracy (at ± 10 °C from the calibration temperature):

Absolute power: $< \pm 1$ dB for -65 to 30 dBm (typically $< \pm 0.6$ dB) Relative power:

< ±0.15 dB for range 1.5 dB (-50 to +28 dBm/1.28 MHz)

 $< \pm 0.25$ dB for range 1.5 dB (-55 to -50 dBm/1.28 MHz)

 $< \pm 0.25$ dB for range 3 dB (-50 to +28 dBm/1.28 MHz)

- $< \pm 0.3$ dB for range 3 dB (-55 to -50 dBm/1.28 MHz)
- $< \pm 0.3$ dB for range 4.5 dB (-55 to +28 dBm/1.28 MHz)
- < ±0.5 dB for range 24 or 36 dB (-55 to +28 dBm/1.28 MHz)

Temperature range: +15 to +55 °C

Open loop power control (OLPC) measurement

Measurement method: the open loop power control is the ability of the UE transmitter to sets its output power to a specific value. When the open loop power control measurement is initiated, the test set captures the first UpPTS burst in an access sequence, and measures the RRC filtered mean power in UpPTS timeslot

Measurement level range: -60 to +28 dBm/1.28 MHz; measured signal level is expected to be within +10 to -20 dB of the expected power

Frequency capture range: -20 to +20 kHz from the expected measurement receiver frequency

Timing capture range: -32 to +32 chips from the ideal UpPTS position with 0 time offset

Measurement interval: 127 chips excluding 0.5 chips on each edge of the 128 chips UpPTS on part

Concurrency capabilities: Open loop power control measurement cannot be made concurrently with other measurements. Open loop power control measurement cannot be made while the HSDPA RMC connection is provided

Temperature range: +15 to +55 °C

Receiver measurements

Loopback BER measurement

Measurement method: data loopback (mode 1 in 3GPP TS 34.109) **Concurrency capabilities**: Loopback BER measurement cannot be made concurrently with CLPC/ILPC, TD-SCDMA Dynamic Power, BLER and HSDPA BLER measurement; loopback BER measurements can be made concurrently with all other measurements.

BER measurement input level range: -50 to +28 dBm/3.84 MHz

Final results: measured BER, number of errors, number of bits tested, uplink missing blocks, CRC errors, and loopback delay

Block error ratio

Measurement method: the UE is configured to loop back the data bits and the CRC bits from the downlink transport blocks into the uplink transport blocks on the DPCH; a comparison is made in the test set by generating a CRC using the data bits received on the uplink and comparing the calculated CRC against the CRC received in the uplink transport block

Reported parameters: measured BLER, block error count, number of blocks tested, and uplink missing blocks

Concurrency capabilities: BLER measurements cannot be made concurrently with loopback BER, HSDPA BLER measurement, dynamic power measurement, open loop power control measurement or close loop power control measurements, or while speech is provided on the downlink; BLER measurements can be made concurrently with all other measurements

HSDPA block error ratio

Measurement method: test set counts the ACK/NACK/statDTX on UE HS-DPCCH and uses the results to calculate BLER

Reported parameters: measured BLER, number of blocks tested, throughput, number of ACKs, number of NACKs, and number of stat DTXs

Concurrency capabilities: HSDPA BLER measurements cannot be made concurrently with loopback BER, BLER measurement, dynamic power measurement, open loop power control measurement or close loop power control measurements, or while speech is provided on the downlink; BLER measurements can be made concurrently with all other measurements

Common measurements

Frequency stability measurement

Types of signals measured: analog and AMPS signals with or without SAT and with frequency modulation index β < 3.0 radians

Frequency capture range: signal must be within ±200 kHz of test set's expected frequency

Measurement rate range: 100 Hz to 15 kHz

Minimum input level: signal at test set's RF IN/OUT must have analog Tx power > -30 dBm

Measurement trigger source: immediate

Measurement additional filter: pass band = 30 kHz; stop frequency at \pm 60 kHz (-25 dB attenuation)

Available result: RF frequency and RF frequency error

Multi-measurement capabilities: 1 to 999 measurements, minimum, maximum, average, and standard deviation in Hz for all results and worst case RF frequency error in ppm result

Concurrency capabilities: frequency stability measurement can be made concurrently with all analog measurements

Measurement modes: swept mode or zero span

Frequency ranges: although the spectrum monitor is available at any frequency supported by the test set, specifications apply only inside of the calibrated bands: 450 to 496 MHz, 700 to 800 MHz, 810 to 960 MHz, 1.7 to 1.99 GHz, and 2.48 to 2.58 GHz

Frequency spans, resolution bandwidth range:

Span and RBW can be independently set, except for zero span; zero span can only be set with the RBW combinations shown below

(Specifications only apply for span and RBW combinations shown in the following table):

Span	RBW	Displayed dynamic range
100 MHz	5 MHz	50
80 MHz	1 MHz	55
40 MHz	300 kHz	60
20 MHz	100 kHz	65
12 MHz	100 kHz	65
10 MHz	100 kHz	65
5 MHz	30 kHz	70
4 MHz	30 kHz	70
2.5 MHz	10 kHz	75
1.25 MHz	3 kHz	80
500 kHz	1 kHz	80
125 kHz	300 kHz	80
0	1 MHz	55
0	300 kHz	60
0	100 kHz	65

RBW filter types: flattop in swept mode, Gaussian in zero span

Zero span sweep time: settable from 50 µs to 70 ms

Zero span offset time: settable from 0 to 10 s

Reference level range: settable from -50 to +37 dBm or automatically determined

Averaging capabilities: settable between 1 and 999, or off

Marker functions: three independent markers with modes of normal, delta, and off; operations are peak search, marker to expected power, and marker to expected frequency

Concurrency capabilities: spectrum monitor analysis can be performed concurrently with all measurements

Spectrum monitor

(Continued)

Supplemental characteristics

Typical level accuracy

- < ±2 dB for signals within 50 dB of a reference level
- > -10 dBm and RBW < 5 MHz,
- < ±2 dB for signals within 30 dB of a reference level
- < -10 dBm and RBW = 5 MHz using 5 averages,
- < ±3.5 dB for signals > -70 dBm and within 50 dB of a reference level
- < -10 dBm with RBW < 5 MHz

Displayed average noise level: < -90 dBm for reference level of -40 dBm and 30 kHz bandwidth

Typical residual responses: < -70 dB with input terminated, reference level of -10 dBm and RF generator power < -80 dBm

Typical spurious responses: < -50 dBc with expected frequency tuned to carrier, carrier > 420 MHz, signal and reference level at -10 dBm and all spectral components within 100 MHz of carrier

Frequency resolution: 1 Hz Marker amplitude resolution: 0.01 dB

Timebase Specifications

Internal high stability 10 MHz oven-controlled crystal oscillator (OCXO) **Aging rates:** $< \pm 0.1$ ppm per year, $< \pm 0.005$ ppm peak-to-peak per day during any 24-hour period starting 24 hours or more after a cold start

Temperature stability: < +0.01 ppm frequency variation from 25 °C over the temperature range 0 to 55 °C

Warm-up times: Five minutes to be within ± 0.1 ppm of frequency at one hour, 15 minutes to be within ± 0.01 ppm of frequency at one hour

Typical accuracy after a 30-minute warm-up period of continuous operation is derived from: ±(time since last calibration) x (aging rate) + (temperature stability) + (accuracy of calibration)

Typical initial adjustment: ±0.03 ppm

External reference input

Input frequency: 10 MHz

Input frequency range: typically < ±5 ppm of nominal reference frequency

Input level range: typically 0 to +13 dBm

Input impedance: typically 50 Ohms

External reference output

Output frequency: same as timebase (internal 10 MHz OCXO or external reference input)

Typical output level: typically > 0.5 V rms

Output impedance: typically 50 Ohms

Remote programming

GPIB: IEEE Standard 488.2

Remote front panel lockout: allows remote user to disable the front panel display to improve GPIB measurement speed

Implemented functions: T6, TE0, L4, LE0, SH1, AH1, RL1, SR1, PP0, DC1, DT0, C0, and E2

General Specifications

Dimensions (H x W x D): 8.75 x 16.75 x 24.63 inches (222 x 426 x 625 mm), 7 rack spaces high

Weight: 66 lbs (30 kg)

Display: 10.5 inches (26.7 cm), active matrix, color, liquid crystal

Manual user interface: traditional front panel type or remote computer driven with graphical UI

LAN (local area network) port (for firmware upgrades only): RJ-45 connector, 10 base T Ethernet with TCP/IP support

Operating conditions: 0 to +55 °C, 30 g/m3 absolute humidity (95%/+32 °C, 28%/+55 °C relative humidity)

Storage conditions: -20 to +70 °C, 50 g/m3 absolute humidity, non-condensing (90%/+65 °C relative humidity)

Power: 88 to 135 Vac, 193 to 269 Vac, 50 to 60 Hz, typically 550 VA maximum

Calibration interval: 2 years

EMI: conducted and radiated interference meets CISPR-11, susceptibility meets IEC 1000-4-2, 1000-4-3, and 1000-4-4

Radiated leakage due to RF generator: typically $< 2.5 \,\mu$ V induced in a resonant dipole antenna one inch from any surface except the underside and rear panel set RF generator output frequency and output level of -40 dBm

Spurious leakage: typically < 5 μ V induced in a resonant dipole antenna one inch from any surface on the front half of all sides of the instrument at frequencies other than the RF generator output frequency and output level of -40 dBm with no cable connected to the rear panel LAN port

Power consumption: typically 400 to 450 W continuous

www.agilent.com www.agilent.com/find/e1969a

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

www.agilent.com/quality

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3500
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

32 (0) 2 404 93 40
45 70 13 15 15
358 (0) 10 855 2100
0825 010 700*
*0.125 €/minute
49 (0) 7031 464 6333
1890 924 204
972-3-9288-504/544
39 02 92 60 8484
31 (0) 20 547 2111
34 (91) 631 3300
0200-88 22 55
44 (0) 118 9276201

For other unlisted Countries: www.agilent.com/find/contactus Revised: October 14, 2010

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010, 2011 Printed in USA, February 4, 2011 5990-5591EN

cdma2000 is a registered certification mark of the Telecommunications Industry Association. Used under license.

